Transfer and Validation of a Targeted Microbubble Drug Delivery Platform for Treatment of Colorectal Cancer

Will Townley (will.townley@md.catapult.org.uk), Duygu Yilmaz (duygu.yilmaz@md.catapult.org.uk), Juliana Maynard (juliana.maynard@md.catapult.org.uk) and Malcolm Haddrick (malcolm.haddrick@md.catapult.org.uk)

Medicines Discovery Catapult (MDC)

MDC is a not-for-profit research company specialising in collaborative R&D exploring and developing new approaches to stimulate success in the UK drug discovery sector across Discovery Science & Technology, Informatics, Virtual R&D, Discovery Syndicates, and Samples & Data themes.

One of the challenges is to reduce the high rate of attrition in the delivery of new medicines to patients¹. Innovative drug delivery technologies have the potential to address this by overcoming, for example, cell permeability limitations or by

Microbubbles for therapeutic delivery

Microbubbles (MBs) are micron-sized, gas-filled, lipid shells which have been used routinely in the clinic as contrast agents for ultrasound mediated imaging².

MB technology can enable therapeutic delivery by:

- carrying a drug payload
- attaching biological markers to target them to a specific tissue
- with controlled and directed bursting via ultrasound

'rescuing' drugs with a low therapeutic index.

Microbubble & Liposome characterisation

MBs produced at the MDC are equivalent to those from Leeds for concentration (4.54E+08 ± 1.21E+08 ml⁻¹) and size (%) distribution $(2.1 \pm 1.3 \mu m)$. Importantly less than 1% of MBs are greater than 8µm which is superior to most commercial MBs used for diagnostics.

Liposomes were evaluated on the NS300 (Nanosight) and were found to have a concentration of 1.52E+09 ± 4.98E+08 ml⁻¹ with an average size of 193 ± 71 nm (data) not shown).

- allowing an increase in localised therapeutic drug concentration
- reducing off target systemic effects.

This may help to restore a useful therapeutic profile to drugs that are stalled in development or previously failed to make it into the clinic.

Gene expression analysis Tissue samples from MB treated and non-treated xenograft mice were analysed using the (Human) PanCancer Pathways Panel code set (Nanostring) for quantitative analysis of RNA expression.

MB reproducibility in vivo Time intensity curves visualised on the

Targeted Complex - At

A subset of tumour samples dosed with SN38 showed increased expression (orange) in: apoptosis, chromatin modification and DNA damage genes.

The xenograft samples showed consistent but limited effects compared to control treated SW480 cells. Additional gene expression analysis will be used as a measure of MB exposure for future studies.

Vevo 770 *in vivo* (n=8) across three individual MB preparations showed similar wash-in slopes and AUC.

Accumulation changes were assessed for targeted/untargeted MBs, with targeted complexes preferentially observed more than untargeted MBs.

Group	Initial Slope	CoV
Сточр		
Untargeted	771.38 ± 43.43	15.9%
Targeted complex + VEGFR2 Ab	1214.42 ± 97.96	22.8%
Targeted complex - VEGFR2 Ab	1413.25 ± 164.87	32.9%

MB treatment reduces tumour volume

To test the efficacy of ThMBs, CD1 nude mice were dosed 5 times every 3 days with 100µL of freshly prepared ThMBs (0.17mg/kg). Data showed tumour volume inhibition of 26%, with no observable toxicity issues, reproducible tumour accumulation and pharmacokinetic behaviour. Although there is some separation between the treated and non-treated groups, further work is under way to explore maximise therapeutic effect.

Day Post Dose

Day Post Dose

Conclusion

A successful transfer of MB production technology and encouraging initial *in vivo* studies for SN38 mediated MB therapy for colorectal cancer.

[1]: Kola I, Landis J (2004) 'Can the pharmaceutical industry reduce attrition rates?' Nature Reviews Drug Discovery 3:711-716 [2]: Lindner J (2004) 'Microbubbles in medical imaging: current applications and future directions' Nature Reviews Drug Discovery 3(6):527-532

We work with Innovate UK